Skip to content

BUG: Division results in 0 values for large dfs with numpy==2.3.5 #63320

@tilyevsky12

Description

@tilyevsky12

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import pandas as pd
import numpy as np

# Set dimensions
n_rows = 5000
n_cols = 4097

# Create column names
cols = [f"col_{i}" for i in range(1, n_cols + 1)]

# Generate random DataFrame
df = pd.DataFrame(np.random.randn(n_rows, n_cols), columns=cols)

# Generate Series with same column index
series = pd.Series(np.ones(n_cols), index=cols)

# Divide DataFrame by Series (broadcasting across rows)
result = df.div(series)

df_from_np = pd.DataFrame(df.values/series.values, index=df.index, columns=df.columns)

print (df.equals(result))# -> False when n_cols > 4096
print (df.equals(df_from_np))# -> True

Issue Description

If you have a df with more than 4096 columns, dividing it by a series (row/element wise division), you can get 0s in the result for random entries in the df. However, doing this in numpy directly and then converting back into a df works no problem. I have confirmed that downgrading numpy to 1.26.4 resolves the issue about equals statements will print True.

Expected Behavior

After dividing a df by a series of ones, it should equal itself and not have any 0s in the output.

Installed Versions

INSTALLED VERSIONS

commit : 9c8bc3e
python : 3.11.7
python-bits : 64
OS : Linux
OS-release : 5.14.0-503.40.1.el9_5.x86_64
Version : #1 SMP PREEMPT_DYNAMIC Wed Apr 30 17:38:54 UTC 2025
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8

pandas : 2.3.3
numpy : 2.3.5
pytz : 2023.4
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : 3.0.12
sphinx : None
IPython : 9.0.2
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.5
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : 2024.11.0
fsspec : 2025.3.2
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : None
matplotlib : 3.10.1
numba : 0.63.0
numexpr : 2.10.2
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : 1.4.6
pyarrow : 19.0.1
pyreadstat : None
pytest : 8.3.5
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.3
sqlalchemy : 2.0.44
tables : 3.10.2
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : 0.23.0
tzdata : 2025.2
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    BugNeeds TriageIssue that has not been reviewed by a pandas team member

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions